A number of seminars will be held to discuss in detail a number of recent papers on powdery mildews. Participants, and especially PhD students and postdocs, should volunteer to present a paper, or more, in approximately 15 to 20 minutes during these seminars. Their .ppt presentations will be followed by group discussions. Please mention on the application form your willingness to present one paper from the following list (all published since 2010):

Desprez-Loustau ML, Massot M, Feau N, Fort T, De Vicente A, Tores JA, Fernandez-Ortuno D (2017) Further support of conspecificity of oak and mango powdery mildews and first report of Erysiphe quercicola and Erysiphe alphitoides on mango in mainland Europe. Plant Disease, in press (DOI: http://dx.doi.org/10.1094/PDIS-01-17-0116-RE)

Desprez-Loustau ML, Feau N, Mougou-Hamdane A, Dutech C (2011) Interspecific and intraspecific diversity in oak powdery mildews in Europe: coevolution history and adaptation to their hosts. Mycoscience 52: 165-173.

Frenkel O, Portillo I, Brewer MT, Péros JP, Cadle-Davidson L, Milgroom MG (2012) Development of microsatellite markers from the transcriptome of Erysiphe necator for analysing population structure in North America and Europe. Plant Pathology 61: 106-119.

Frenkel O, Cadle-Davidson L, Wilcox WF, Milgroom MG (2015) Mechanisms of resistance to an azole fungicide in the grapevine powdery mildew fungus, Erysiphe necator. Phytopathology 105: 370-377.

Jankovics T, Komáromi J, Fábián A, Jager K, Vida G, Kiss L (2015) New insights into the life cycle of the wheat powdery mildew: Direct observation of ascosporic infection in Blumeria graminis f. sp. tritici. Phytopathology 105: 797-804.

Jones L, Riaz S, Morales-Cruz A, Amrine KC, McGuire B, Gubler WD, Walker MA, Cantu D (2014) Adaptive genomic structural variation in the grape powdery mildew pathogen, Erysiphe necator. BMC Genomics 15: 1081.

Jousimo J, Tack AJM, Ovaskainen O, Mononen T, Susi H, Tollenaere C, Laine A-L (2014) Ecological and evolutionary effects of fragmentation on infectious disease dynamics. Science 344: 1289-1293.

Kovács GM, Jankovics T, Kiss L (2011) Variation in the nrDNA ITS sequences of some powdery mildew species: do routine molecular identification procedures hide valuable information? European Journal of Plant Pathology 131: 135-141.

Lebeda A, Mieslerová B (2011) Taxonomy, distribution and biology of lettuce powdery mildew (Golovinomyces cichoracearum sensu stricto). Plant Pathology 60: 400-415.

Martínez‐Cruz J, Romero D, Vicente A, Pérez‐García A (2017) Transformation of the cucurbit powdery mildew pathogen Podosphaera xanthii by Agrobacterium tumefaciens. New Phytologist 213: 1961–1973.

Menardo F, Praz CR, Wyder S, Ben-David R, Bourras S, Matsumae H, McNally KE, Parlange F, Riba A, Roffler S, Schaefer LK, Shimizu KK, Valenti L, Zbinden H, Wickler T, Keller B (2016) Hybridization of powdery mildew strains gives rise to pathogens on novel agricultural crop species. Nature Genetics 48: 201-205.

Pirondi A, Kitner M, Lotti M, Sedláková, B., Lebeda, A., & Collina, M. (2016) Genetic structure and phylogeny of Italian and Czech populations of the cucurbit powdery mildew fungus Golovinomyces orontii inferred by multilocus sequence typing. Plant Pathology 65: 959–967.

Spanu PD et al. (2010) Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330(6010): 1543-1546.

Takamatsu S (2013) Origin and evolution of the powdery mildews (Ascomycota, Erysiphales). Mycoscience 54: 75-86.

Takamatsu S, Matsuda S, Grigaliunaite B (2013) Comprehensive phylogenetic analysis of the genus Golovinomyces (Ascomycota: Erysiphales) reveals close evolutionary relationships with its host plants. Mycologia 105: 1135-1152.

Takamatsu S, Ito (Arakawa) H, Shiroya Y, Kiss L, Heluta V (2015) First comprehensive phylogenetic analysis of the genus Erysiphe (Erysiphales, Erysiphaceae) I. The Microsphaera lineage. Mycologia 107: 475-489.

Takamatsu S, Siahaan SA, Moreno-Rico O, Cabrera de Alvarez MG, Braun U (2016) Early evolution of endoparasitic group in powdery mildews: molecular phylogeny suggests missing link between Phyllactinia and Leveillula. Mycologia 108: 837-850.

Tollenaere C, Susi H, Nokso-Koivisto J, Koskinen P, Tack A, Auvinen P, Paulin L, Frilander MJ, Lehtonen R, Laine AL (2012) SNP design from 454 sequencing of Podosphaera plantaginis transcriptome reveals a genetically diverse pathogen metapopulation with high levels of mixed-genotype infection. PloS ONE 7(12): e52492.

Troch V, Audenaert K, Bekaert B, Höfte M, Haesaert G (2012) Phylogeography and virulence structure of the powdery mildew population on its new host triticale. BMC Evolutionary Biology 12: 76.

Troch V, Audenaert K, Wyand RA, Haesaert G, Höfte M, Brown JK (2014) Formae speciales of cereal powdery mildew: close or distant relatives? Molecular Plant Pathology 15: 304-314.

Weber MG, Porturas LD, Taylor SA (2016) Foliar nectar enhances plant–mite mutualisms: the effect of leaf sugar on the control of powdery mildew by domatia-inhabiting mites. Annals of Botany 118: 459-466.

Weßling R, Panstruga R (2012) Rapid quantification of plant-powdery mildew interactions by qPCR and conidiospore counts. Plant Methods 8: 35.

Wicker W, Oberhaensli S, Parlange F, Buchmann JP, Shatalina M, Roffler S, Ben-David R, Doležel J, Šimková H, Schulze-Lefert P, Spanu PD, Bruggmann R, Amselem J, Quesneville H, van Themaat EVL, Paape T, Shimizu KK, Keller B (2013) The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nature Genetics 45: 1092-1096.

Zheng Z, Nonomura T, Bóka K, Matsuda Y, Visser RGF, Toyoda H, Kiss L, Bai Y (2013) Detection and quantification of Leveillula taurica growth in pepper leaves. Phytopathology 103: 623-632.